Reducing cache miss rate using thread overallocation to accelerate the MPI-OpenMP-based 2-D Hopmoc method

Frederico L. Cabral (fcabral@Incc.br)!, Gabriel Costa (gcosta@Incc.br)!, Carla Osthoff (osthoff@Incc.br)!, Sanderson L. Gonzaga de Oliveira (sanderson@dcc.ufla.br)
1 - National Laboratory of Scientific Computing (LNCC), 2 - Federal University of Lavras (UFLA)

Abstract
. B NAIVE & MPI-OMP-EWS
This paper applies the MPl-OpenMP-based two-dimensional Hopmoc method using the explicit work-sharing technique with a recently proposed mechanism to BNAIVE ¢ MPI-OMP-EWS
. _ . . . ED’DDD’DDDjDDD
redu_cc_e implicit Parrle.rs in O.penI\/IP. Specifically, this paper a_pplles the numer|c.a| a_Igorlthm to provide approximate solutions to the advec’.uc.)n diffusion equation. 60.000,000,000
Additionally, this article splits the mesh used by the numerical method and distributes them to over-allocated threads. The mesh partitions became so small §0,000,000,000 [
that the approach reduced the cache miss rate. Consequently, the strategy accelerated the numerical method in multicore systems. This paper then evaluates E 70,000,000,000 r = 50,000,000,000
the results of implementing the strategy under different metrics. As a result, the use of the set of techniques improved the performance of the parallel numerical S 60,000,000,000 = W E 000000 00
method. & 50,000,000,000 o
HOPMOC : = 40,000,000,000 *&f £ 30.000,000,000
Versions = o® ©
S 30,000,000,000 T — -‘E 20,000,000,000
i
1 begin] 20,000,000,000 N 10,000,000,000
2 Each MPI process computes its partition mesh 10,000,000,000 - R
, 3 Each OMP thread computes 1ts local 0 0
1 begin 4 mesh inside the partition mesh allocated to a process 0 400 800 1200 1600 2000 2400 2800 3200 0O 400 800 1200 1600 2000 2400 2800 3200
2 Each MPI process computes its partition mesh " while tinie < FinalTime do 4 os threads 2 of threads
3 while time < FinallTime do a
4 * T lock (a) L1 cache miss count from executions of naive and MPI-OMP-EWS implementations of the (b) L2 cache miss count from executions of naive and MPI-OMP-EWS implementations of
5 #pragma omp for 8 for columns in the thread local mesh do two-dimensional Hopmoc method varying the number of threads from 1 to 3,200 threads the two-dimensional Hopmoc method varying the number of threads from 1 to 3,200 threads
i for columns in the partition mesh do 9 for all lines in the iw,;;;r‘-utl -m.esi& a:lﬂt | | S 20 L el L2 el mils ennms
7 for all lines in the input mesh do 10 | MMOC or an explicit or implicit time semi-step
8 ‘ MMOC or an explicit or implicit time semi-step 11 end) ® ®)
9 aridl 12 end Experiment performed on a Intel® Xeon® Gold 6230R (104 physical cores and 208 threads)
10 end 13 unlock
11 14 Each OMP thread waits for its neighbours ENaive ®MPI/OMP-EWS
15 |
12 end s
16 end a & @
13 end 160 - *
17 end ®
| #
(a) Pseudocode excerpt of parallel Hopmoc method using naive MPI-OMP (b) Pseudocode excerpt of parallel Hopmoc method using MPI-OMP-EWS MD " #
Figure 1: Two distinct implementaions of th Hopmoc method — .
_ 100 _
2 &
%
®
&
| BNAIVE &MPI-OMP-EWS - -
mNaive « MPI/OMP-EWS 4,500,000,000 s @
27 — 4,000,000,000 o | 20
+ c * = - L 2
24 *,‘,**"** L 3 3500000000 gepetetomar —u _guul LU h " " " " m N BN N B E EE EER B
21 PS » 3,000,000,000 F‘l--.. Voo 0 500 1000 1500 2000 2500 3000 3500 4000
o 18 * £ 2,500,000,000 . of threads
S 15 L. @ 2,000,000,000 .-
2 12 ¢ ﬁ 1,500,000,000 * Figure 4: Speedups from executions of naive and MPI-OMP-EWS-based implementations of the two-dimensional Hopmoc method varying the number of threads from 1 to 3,744 threads.
ZI ! o 1,000,000,000)
c umm t**ﬁ* o Egun ~ 500,000,000 M2 17OV PPN "
;:-,r lI..‘..ﬁﬁ... apnEgipgapaSpEEEER . Bibliography
Dl S PP L LRSS @bﬁ &E} Cabral, F.L., Gonzaga de Oliveira, S.L., Osthoff, C., Costa, G.P., Brandao,D.N., Kischinhevsky, M.; An evaluation of MPI and OpenMP paradigmsin finite-
0O 100 200 300 400 500 600 700 800 900 1000 1100 difference explicit methods for PDEs on shared-memory multi-and manycore systems. Concurrency and Computation: Practice and Experience, 32(20), e5642 (2020).
of threads # of threads https://doi.org/https:/ /doi.org/10.1002 /cpe.5642,https: / /onlinelibrary.wiley.com /doi/abs/10.1002 /cpe.5642, 5642 cpe.5642
(a) Speedups from executions of naive and MPI-OMP-EWS implementations of the (b) LLC miss count from executions of naive and MPI-OMP-EWS implementations of the
two-dimensional Hopmoc method varying the number of threads from 1 to 1,100 threads. two-dimensional Hopmoc method varying the number of threads from 1 to 1,200 threads
Figure 2: Speedup and LLC miss count

[Frederico L. Cabral, Gabriel Costa, Carla Osthoff, Sanderson L. Gonzaga de Oliveira]

Reducing cache miss rate using thread overallocation to accelerate the MPI-OpenMP-based 2-D Hopmoc method

National Laboratory of Scientific Computing

