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In recent years the increasing necessity to speed up the execution ofnumerical algorithms has leaded researchers to the use of co-processorsand graphic cards such as the NVIDIA GPU’s. Despite CUDA Cmeta-language was introduced to facilitate the development of generalpurpose-applications, the solution to the common question: How to al-locate (cudaMalloc) two-dimensional array?, is not simple. In this paper,we present a memory structure that allows the use of multidimensionalarrays inside a CUDA kernel, to demonstrate its functionality, this struc-ture is applied to the explicit finite difference solution of the non-steadyheat transport equation.

Abstract

The motivation of this paper arises during the development of an applica-tion based on finite difference method to solve the heat transfer equation,to facilitate the implementation of the algebraic expressions. The maindifficulty when implementing a finite-difference code on a GPU comesfrom the computational stencil. For example, a fourth-order spatial oper-ator, the thread that handles the calculation of point (i, j, k) needs to ac-cess the arrays points (i+1, j, k), (i+2, j, k),(i−1, j, k),(i−2, j, k),(i, j+1, k)and so on. This implies that 13 accesses to the memory are neededon the GPU to approximate fourth-order finite difference. Due to thenumber of discrete points that have to be handled, the algebraic ex-pression implementation could be error-prone. For this reason in thiswork is proposed a data structure that allows access to the multidi-
mensional indices inside a CUDA kernel improving the readability andprogrammability.

Motivation

The bidimensional non-steady heat transport is used,
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in the explicit finite difference form, expressed as:
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to probe the structure proposed.Also the tridimensional non-steady heat transport equation, is solved
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using its explicit finite difference form:
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Study Case: non-steady heat transport equation

__global__ void kernel( float ∗∗T, float ∗∗Tn, int ny, int\nx, float dt , float C, float dx2, float dy2){ int i , j , l ;j = blockIdx.x∗blockDim.x+threadIdx.x;i = blockIdx.y∗blockDim.y+threadIdx.y;float Txx; float Tyyif ( ( i > 0) && (i<(ny−1)) && (j > 0) && (j < (nx−1))) {l=i∗nx+jTxx = (T[l+1] −2.0f∗T[l ] + T[l−1])/dx2;Tyy = (T[l+nx] −2.0f∗T[l ] + T[l−nx])/dy2;Tn[l ] = T[l]+dt∗C∗(Txx+Tyy);}}Notice the classical use of only one index (l) to operate with complexcomputational molecules.

Traditional kernel implementation for the 2D case

To can handle two indices inside a CUDA Kernel is necessary tocreate two pointers, the first one to transfer data between CPU andGPU, and the second one to allocate a 2D array similar to standard C.
void Array_2D_GPU(float ∗∗P,float ∗∗∗M,int n,int m) \int i ; float ∗∗ P_M, ∗∗ dev_M;P_M = (float ∗∗) malloc(n∗sizeof( float ∗));if (P_M == NULL){printf("Memory error"); exit(−1); }cudaMalloc((void∗∗)&P_M[0],n∗m∗sizeof(float));if (P_M[0]==NULL){ printf("Memory error"); exit(−1); }for ( i=1; i<n; i++) P_M[i] = P_M[0] + i ∗ m;cudaMalloc((void∗∗∗)&dev_M,n∗sizeof(float∗));if (dev_M==NULL){printf("Memory error"); exit(−1); }cudaMemcpy(dev_M,P_M,n∗sizeof(float∗), cudaMemcpyHostToDevice);∗(P) = P_M[0]; ∗(M) = dev_M;
dev_M points to the 2D array that could be used as a 2D array insidea kernel, and P_M is used to transfer data between CPU and GPU.

Contiguous memory allocation for 2D array in CUDA C

__global__ void kernel( float ∗∗T, float ∗∗Tn, int ny, int\nx, float dt , float C, float dx2, float dy2){ int i , j ;j = blockIdx.x∗blockDim.x+threadIdx.x;i = blockIdx.y∗blockDim.y+threadIdx.y;float Txx; float Tyyif ( ( i > 0) && (i<(ny−1)) && (j > 0) && (j < (nx−1))) {Txx = (T[i ][ j+1] −2.0∗T[i ][ j ] +T[i ][ j −1])/dx2;Tyy = (T[i+1][ j ] −2.0∗T[i ][ j ] +T[i−1][ j ])/ dy2;Tn[i ][ j ] = T[i ][ j ]+dt∗C∗(Txx+Tyy);}}
In this case, two indices are operating inside the kernel, giving moreexpressiveness, and provides more clarity to code implementation.

Proposed kernel implementation for the 2D case

Several numerical experiments were conducted using double and singleprecision over a mid-range card RTX 2060, with 8GB of global memorywith CUDA 11.4. For the 2D Case, the Block size was configured indifferent sizes: 4 × 4, 8 × 4, 8 × 8, 16 × 8, 16 × 16, 32 × 16 and 32 × 32.The notation used is XD−I, where X is the dimension of the array usedinside the kernel, and I the number of indices used and the S indicatesthe use of shared memory.
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The obtained results regarding performance shown that there is no over-load due to the introduction of the 2D structure.

Performance

This work is introduced a data structure that allows creating multi-arrays in CUDA as it is done in standard C language. It consists ofdefining an auxiliary pointer to transfer data between CPU and GPU.This structure improves the readability of the source code because itcan handle [][] or [][][] indices for 2D and 3D arrays respectively,easing the maintenance and modification of the application, especiallyin the management of the boundary conditions. The solution of the heattransport equation by the finite difference method is selected as a studycase.

Final Remark


