Solving the heat transfer equation by a finite difference method using
multi-dimensional arrays in CUDA as in standard C

Abstract

In recent years the increasing necessity to speed up the execution of
numerical algorithms has leaded researchers to the use of co-processors
and graphic cards such as the NVIDIA GPU's. Despite CUDA C
meta-language was introduced to facilitate the development of general
purpose-applications, the solution to the common question: How to al-
locate (cudaMalloc) two-dimensional array?, is not simple. In this paper,
we present a memory structure that allows the use of multidimensional
arrays inside a CUDA kernel, to demonstrate its functionality, this struc-
ture is applied to the explicit finite difference solution of the non-steady
heat transport equation.

Motivation

The motivation of this paper arises during the development of an applica-
tion based on finite difference method to solve the heat transter equation,
to facilitate the implementation of the algebraic expressions. The main
difficulty when implementing a finite-difference code on a GPU comes
from the computational stencil. For example, a fourth-order spatial oper-
ator, the thread that handles the calculation of point (i, j, k) needs to ac-
cess the arrays points (i+1, j, k), (i+2, j, k),(i—1, j, k),(i—=2, j, k),(i, j+1, k)
and so on. This implies that 13 accesses to the memory are needed
on the GPU to approximate fourth-order finite difference. Due to the
number of discrete points that have to be handled, the algebraic ex-
pression implementation could be error-prone. For this reason in this
work is proposed a data structure that allows access to the multidi-
mensional indices inside a CUDA kernel improving the readability and
programmability.

Study Case: non-steady heat transport equation

The bidimensional non-steady heat transport is used,

E:C Ox2

in the explicit finite difference form, expressed as:

Ty = 2T+ Ty | Thion = 2T+ Thy

i+1,j {,j+1

Ax? Ay? '

oT _[aT? oT?
dy? - —

), 0<x,y<1,t>0.

[+1 _ Tl
I =1, + CAt

to probe the structure proposed.
Also the tridimensional non-steady heat transport equation, is solved

oT oT> 9T? 9T?
ot

—__ =C | | 0<x, y, z<1, t>0,
dx? = dy? 022) =X dhest e

using its explicit finite difference form:

[[[[[[
1 Ti—|—1, ko 27—1 Kk T Ti—1, Kk Ti, +1,k 27—[Kk T Tt —1,k
Tl—l— _ Tl + CAt J J J , J J J
=1 |
[,j,k i,j,k sz Ayz
[[[
| Ti,j,l<—|—1 o 2Ti,j,k T Ti,j,/<—1
|
AZz?

Traditional kernel implementation for the 2D case

__global__ void kernel(float *xT, float *xTn, int ny, int\
nx, float dt, float C, float dx2, float dy2)

{int i,j,L;

j = blockldx.xxblockDim.x+threadldx.x;

L = blockldx.yxblockDim.y+threadldx.y;

float Txx; float Tyy

f((i >0) && (i<(ny 1) && (j > 0) && (j < (nx—1))) {

| =1%NX+]

1] —2.0fxT[L] + T{l-1])/dx2;
nx| —2.0fxT[l| + T{l--nx])/dy2;
[4+dtxCx(Txx+Tyy); }

Notice the classical use of only one index (l) to operate with complex
computational molecules.

Josefina Sanchez-Noguez', Carlos Couder-Castaieda?, J.J. Hernandez-Gémez?, ltzel Navarro-Reyes
" Facultad de Estudios Superiores Acatldn, UNAM, Programa de Matemadticas Aplicadas y Computacién
> Centro de Desarrollo Aeroespacial, Instituto Politécnico Nacional
3> Escuela Superior de Fisica y Matematicas, Instituto Politécnico Nacional

Contiguous memory allocation for 2D array in CUDA C

To can handle two indices inside a CUDA Kernel is necessary to
create two pointers, the first one to transfer data between CPU and
GPU, and the second one to allocate a 2D array similar to standard C.

void Array_2D_GPU(float *xxP float *x*M,int n,int m) \
int i: float *x P_M, xx dev_M:

P_M = (tloat *x) malloc(nx*sizeof(float *));

if (P_M == NULL){printf(‘Memory error'); exit(—1); }
cudaMalloc((void*x)&P_M|0],nxm=sizeof(float));

if (P_M|0]==NULL){ printf("Memory error'); exit(- 1); }
for (i=1; i<n; i++) P_M[i| = P_M|0] + { * m;
cudaMalloc((void=*xx)&rdev_M,nxsizeof(floatx));

if (dev_M==NULL){printf(‘Memory error"); exit(-1); }
cudaMemcpy(dev_M,P_M,nxsizeofi(floatx), cudaMemcpyHostToDevice);
x(P) = P_MI[0];, *(M) = dev_M,;

dev_M points to the 2D array that could be used as a 2D array inside
a kernel, and P_M is used to transter data between CPU and GPU.

Proposed kernel implementation for the 2D case

__global__ void kernel(float *xT, float *xTn, int ny, int\
nx, float dt, float C, float dx2, float dy2)

{ int i,j;

j = blockldx.xxblockDim.x+threadldx.x;

i = blockldx.yxblockDim.y+threadldx.y;

float Txx; float Tyy

if((L >0)&& (i<(ny-—1)) && (j > 0) && (j < (nx—1))) {
Txx = (T[i [j+1] —2.0«T[i] j] +Ti]j—1])/dx2;

Tyy = (Tli+1j 1 ~20«T[i [j] +T[E1]j)/ dy2;

Tn[t] j] = T[i] jlHdtxCx(Txx+Tyy);}

}

In this case, two indices are operating inside the kernel, giving more
expressiveness, and provides more clarity to code implementation.

Performance

Several numerical experiments were conducted using double and single
precision over a mid-range card RTX 2060, with 8GB of global memory
with CUDA 11.4. For the 2D Case, the Block size was configured in
different sizes: 4 x 4,8 x 4,8 x 8, 16 x 8, 16 x 16, 32 x 16 and 32 x 32.
The notation used is XD—I, where X is the dimension of the array used
inside the kernel, and | the number of indices used and the S indicates
the use of shared memory.

%\ : 1D-1-1

\
E 600 Q, < o D10
o \
g 500 | §§\\ - - 1D-1-2-S
o . _o- 2D-2-2
B0 o
S 400 o o - - - - j - ®- 2D-2-2-S
5 & - * o % _ezz:-
o .;;::::‘ _____ o -—-=-==
S 300
®

200 \ \ \ \ \
24 25 26 27 938 99 510
Block size

The obtained results regarding performance shown that there is no over-
load due to the introduction of the 2D structure.

Final Remark

This work is introduced a data structure that allows creating multi-
arrays in CUDA as it is done in standard C lanqguage. It consists of
defining an auxiliary pointer to transter data between CPU and GPU.

This structure improves the readability of the source code because it
can handle [|]] or [||]|] indices for 2D and 3D arrays respectively,
easing the maintenance and modification of the application, especially
in the management of the boundary conditions. The solution of the heat
transport equation by the finite difference method is selected as a study
case.

